SHOP.AGUARDIENTECLOTHING.COM Books > Functional Analysis > Measures of noncompactness in Banach spaces. by Jozef Banas

Measures of noncompactness in Banach spaces. by Jozef Banas

By Jozef Banas

Show description

Read Online or Download Measures of noncompactness in Banach spaces. PDF

Similar functional analysis books

A panorama of harmonic analysis

Tracing a direction from the earliest beginnings of Fourier sequence via to the newest learn A landscape of Harmonic research discusses Fourier sequence of 1 and several other variables, the Fourier rework, round harmonics, fractional integrals, and singular integrals on Euclidean house. The climax is a attention of principles from the viewpoint of areas of homogeneous kind, which culminates in a dialogue of wavelets.

Real and Functional Analysis

This publication introduces most crucial facets of contemporary research: the speculation of degree and integration and the speculation of Banach and Hilbert areas. it truly is designed to function a textual content for first-year graduate scholars who're already acquainted with a few research as given in a publication just like Apostol's Mathematical research.

Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung

Die lineare Funktionalanalysis ist ein Teilgebiet der Mathematik, das Algebra mit Topologie und research verbindet. Das Buch führt in das Fachgebiet ein, dabei bezieht es sich auf Anwendungen in Mathematik und Physik. Neben den vollständigen Beweisen aller mathematischen Sätze enthält der Band zahlreiche Aufgaben, meist mit Lösungen.

Extra resources for Measures of noncompactness in Banach spaces.

Sample text

The s e t 0 0 • can _ u s e the procedure closely patterned on that from Denote w ( x , � , C. ) the Kolmogcirov modulus of continui­ with respect to p , where fl i s de fined as in chapter 7 , Ch apter 7. e. ) if j) = 0. Obvious ly 51 l im e- o w � e J ( x , fl , e. ) I o. Next , for X e 'Y't(,Lp , put w (x, p , e } sup [ w (x , � . l ( X , e } ( the last equality holds for any Then we have E l im w (x, p , e J e. - o �) . 1 . 2 . The fun ction s . ) are measure s of noncompac tness �i th maximum prope rty .

2 . l im sup h - 0 The fun ation { sup ( IS x-x l : x E h . xJ} a regu l a r measul'e of non aompaatne ss· and r o o f: P roving . that � 0 is a me asure i s standard. First inequal i ty comes from. the inequal i ties 55 shown above . The last inequality comes from an e as i ly proved fact tha t in part 1 0 . 1 . the . S tek l ov modulus " for x with respect to J' as We can also define some measures s imi l arly as Le t us de fine " ( x , J'> , E. :»( x , fi , f> = e, ) : X E: x] , O . 3. The function '1 ( X, j3 , l) is a mea­ s ure of n oncompactness wi th maximum prope rty .

N L: i•O Denote x (i) = [ x 1x< l l 1 (i ): x e: we have the following T H E 0 R E M in C = C�a, b> then i s a measure i n P r o o f: � n C L max [ • 1-0 x ] , i=0 , 1 , 2 , 8. 1. 1 . t ) l : t e: { a � b) ] . , n , (x ( O ) = x) . If µ i s a measure of non compactness �i th A s imple consequence of the definition . For example the functions w ( x C n) ) 2 'Xi c (X ( n ) ) and (n) w (X ; � , &) are such measures . same is true for the spaces � ( ( a ,b) , Rn) of vector-valued differentiable functions Theor� · S .

Download PDF sample

Rated 4.99 of 5 – based on 25 votes