SHOP.AGUARDIENTECLOTHING.COM Books > Functional Analysis > Density and duality theorems for regular Gabor frames by Mads Sielemann Jakobsen, Jakob Lemvig

Density and duality theorems for regular Gabor frames by Mads Sielemann Jakobsen, Jakob Lemvig

By Mads Sielemann Jakobsen, Jakob Lemvig

http://www.sciencedirect.com/science/article/pii/S0022123615004152

We examine Gabor frames on in the neighborhood compact abelian teams with time–frequency shifts alongside non-separable, closed subgroups of the part area. Density theorems in Gabor research nation valuable stipulations for a Gabor method to be a body or a Riesz foundation, formulated in basic terms by way of the index subgroup. within the classical effects the subgroup is thought to be discrete. We end up density theorems for common closed subgroups of the section area, the place the required stipulations are given when it comes to the “size” of the subgroup. From those density effects we can expand the classical Wexler–Raz biorthogonal relatives and the duality precept in Gabor research to Gabor structures with time–frequency shifts alongside non-separable, closed subgroups of the part house. Even within the euclidean atmosphere, our effects are new.

Show description

Read Online or Download Density and duality theorems for regular Gabor frames PDF

Similar functional analysis books

A panorama of harmonic analysis

Tracing a course from the earliest beginnings of Fourier sequence via to the most recent learn A landscape of Harmonic research discusses Fourier sequence of 1 and several other variables, the Fourier rework, round harmonics, fractional integrals, and singular integrals on Euclidean area. The climax is a attention of rules from the viewpoint of areas of homogeneous variety, which culminates in a dialogue of wavelets.

Real and Functional Analysis

This ebook introduces most crucial points of recent research: the speculation of degree and integration and the idea of Banach and Hilbert areas. it truly is designed to function a textual content for first-year graduate scholars who're already acquainted with a few research as given in a publication just like Apostol's Mathematical research.

Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung

Die lineare Funktionalanalysis ist ein Teilgebiet der Mathematik, das Algebra mit Topologie und research verbindet. Das Buch führt in das Fachgebiet ein, dabei bezieht es sich auf Anwendungen in Mathematik und Physik. Neben den vollständigen Beweisen aller mathematischen Sätze enthält der Band zahlreiche Aufgaben, meist mit Lösungen.

Additional info for Density and duality theorems for regular Gabor frames

Sample text

1) F Vg f · Vg Eω Tx f (β, αx) d(β, α) d(x, ω) = G×G G×G (c) f, Eβω Tα−1 f Eβ Tx−1 α−1 g, g d(β, α) d(x, ω) = G×G G×G α → α−1 , β → βω −1 = f, Eβ Tα f Eβω−1 Tαx−1 g, g d(β, α) d(x, ω) G×G G×G |Vf f (α, β)| = G×G = f S0 ,f |Vg g(αx−1 , βω −1 )| d(x, ω) d(α, β) G×G g S0 ,g . 4. Let fi ∈ L2 (G) and gi ∈ S0 (G), i = 1, 2. Then the mapping ϕ : G × G → C, (x, ω) → Vg1 f1 · Vg2 f2 (x, ω) belongs to S0 (G × G). Proof. It is clear that ϕ ∈ L1 (G × G). Now, let g0 ∈ S0 (G) and define ϕ0 := Vg0 g0 . 3 the function ϕ0 ∈ S0 (G × G), and thus ϕ20 ∈ S0 (G × G).

Lemvig, Reproducing formulas for generalized translation invariant systems on locally compact abelian groups, Trans. Amer. Math. Soc. 4948, in press. S. Jakobsen, J. Lemvig, Co-compact Gabor systems on locally compact abelian groups, J. Fourier Anal. 1007/s00041-015-9407-0, arXiv:1411:4948, in press. M. Janssen, Duality and biorthogonality for Weyl–Heisenberg frames, J. Fourier Anal. Appl. 1 (4) (1995) 403–436. A. Johnson, Atomic and nonatomic measures, Proc. Amer. Math. Soc. 25 (1970) 650–655.

Proof. Let f, g ∈ S0 (G). By the argument preceding the proposition, we have that Vg f ∈ L1 (G × G). 1) F Vg f · Vg Eω Tx f (β, αx) d(β, α) d(x, ω) = G×G G×G (c) f, Eβω Tα−1 f Eβ Tx−1 α−1 g, g d(β, α) d(x, ω) = G×G G×G α → α−1 , β → βω −1 = f, Eβ Tα f Eβω−1 Tαx−1 g, g d(β, α) d(x, ω) G×G G×G |Vf f (α, β)| = G×G = f S0 ,f |Vg g(αx−1 , βω −1 )| d(x, ω) d(α, β) G×G g S0 ,g . 4. Let fi ∈ L2 (G) and gi ∈ S0 (G), i = 1, 2. Then the mapping ϕ : G × G → C, (x, ω) → Vg1 f1 · Vg2 f2 (x, ω) belongs to S0 (G × G).

Download PDF sample

Rated 4.96 of 5 – based on 26 votes